汪 鹏(Peng Wang)

汪 鹏(Peng Wang)

物质循环与资源安全

中国科学院城市环境研究所

个人简介

汪鹏,中国科学院城市环境研究所研究员,中科院百人计划入选者,中科科协青托人才入选者。

澳大利亚新南威尔士大学博士(制造工程及管理)和博士后(生命周期工程实验室),主要从事关键物质循环及风险智能管控研究,在Nature Communications(2篇)、Fundamental ResearchGlobal Environment ChangeApplied EnergyCIRP Annals-Manufacturing Technology (国际生产工程科学院院刊)及《中国科学院院刊》《资源科学》等国内外专业期刊发表论文60多篇;

研究得到中科院百人计划、中国科协青年托举人才计划、福建省高层次引进人才、中科院院级特别研究助理等人才项目支持,获得华人产业生态学会2020年度学术新人奖、澳大利亚新南威尔士大学Writing Fellow、RCR期刊2020年度最佳审稿人等奖项;

主持或参与国家自然科学面上基金、青年基金、国际合作基金、地区合作基金及德国大众可持续发展、北方稀土等工业咨询项目等十多项课题;担任Science of the Total Environment编委,受邀成为Resources Conservation and Recycling“关键资源和可持续发展”特刊编辑,作为单位代表发起成立世界稀土产业协会(REIA),担任联合国环境规划署(UNEP)国际项目立项战略研讨委员会成员、国际关键金属圆桌论坛(IRTC)研究委员会委员(Scientific Board Member);

研究成果为提升城市新兴矿产循环能力、国家关键物质供应安全及全球环境可持续发展提供重要科学支撑,并被IPCC报告重点引用和评述.

兴趣爱好
  • 新兴技术的资源效应评估
  • 物质循环与双碳转型耦合
  • 自然矿产供应风险智能预警
  • 城市矿产成矿规律与勘探技术
  • 生命周期工程及技术
教育经历
  • 制造及工业工程(博士及博士后), 2019

    澳大利亚新南威尔士大学

  • 动力工程及工程热物理(本科及硕士), 2012

    北京科技大学

研究材料

查看所有材料.
.js-id-亮点

论文发表

查看所有论文库.
(2022). China’s Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance. ACS Sustainable Chemistry & Engineering, 8 (45): 16861-16868.

DOI

(2022). Environmental impacts of scandium oxide production from rare earths tailings of Bayan Obo Mine. Journal of Cleaner Production, 270: 122464.

DOI

(2022). Exploring Recycling Potential of Rare, Scarce, and Scattered Metals: Present Status and Future Directions. Sustainable Production and Consumption, 30: 988-1000.

DOI

(2022). Carbon neutrality needs a circular metal-energy nexus. Fundamental Research, 2: 392–395.

DOI

(2021). Future CO2 emission trends and radical decarbonization path of iron and steel industry in China. Journal of Cleaner Production, 326: 129354.

DOI

(2021). Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050. Energy, 227: 120524.

DOI

(2021). How material stocks sustain economic growth: Evidence from provincial steel use in China. Resources, Conservation and Recycling, 171: 105635.

DOI

(2021). 全球关键金属-低碳能源关联研究综述及其启示. 资源科学,43(4): 669-681.

DOI

(2021). Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nature Communications, 12, 2066.

演示文稿 DOI

(2020). Critical rare-earth elements mismatch global wind-power ambitions. One Earth,1(3): 116-125.

DOI

(2020). Byproduct Surplus: Lighting the Depreciative Europium in China’s Rare Earth Boom. Environmental Science & Technology, 54 (22), 14686-14693.

DOI

(2020). Water-carbon trade-off for inter-provincial electricity transmissions in China. Journal of Environmental Management, 268: 110719.

DOI

(2020). Mapping provincial steel stocks and flows in China: 1978–2050. Journal of Cleaner Production262: 121393.

DOI

(2020). Refining the understanding of China's tungsten dominance with dynamic material cycle analysis. Resources, Conservation and Recycling, 158, 104829.

DOI

(2020). Toward sustainable climate change adaptation. Journal of Industrial Ecology, ** 24 (2)**: 318-330.

DOI

(2020). Copper-induced ripple effects by the expanding electric vehicle fleet: A crisis or an opportunity. Resources, Conservation and Recycling, 161, 104861.

DOI

(2020). Chapter 3 - Metal-energy nexus in the global energy transition calls for cooperative actions. The Material Basis of Energy Transitions.

DOI

(2019). Material Criticality and Circular Economy: Necessity of Manufacturing Oriented Strategies. Procedia CIRP80: 667-672.

DOI

(2019). Scenario analysis of China's aluminum cycle reveals the coming scrap age and the end of primary aluminum boom. Journal of Cleaner Production, 226: 793-804.

DOI

(2019). Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resources, Conservation and Recycling145: 322-331.

DOI

(2019). Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition. Applied Energy253: 113612.

DOI

(2018). Role of manufacturing towards achieving circular economy: The steel case. CIRP Annals67(1): 21-24.

DOI

(2018). Prospective Assessment of Steel Manufacturing Relative to Planetary Boundaries: Calling for Life Cycle Solution. Procedia CIRP69: 21-24.

DOI

(2018). Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages. Resources, Conservation and Recycling174: 1492-1502.

DOI

(2015). Cradle-to-cradle modeling of the future steel flow in China. Resources, Conservation and Recycling117A: 45-57.

DOI

(2014). Quantification of Chinese steel cycle flow: Historical status and future options. Resources, Conservation and Recycling87: 191-199.

DOI

Contact